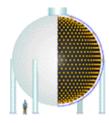

Short Baseline Neutrino Oscillations and MiniBooNE

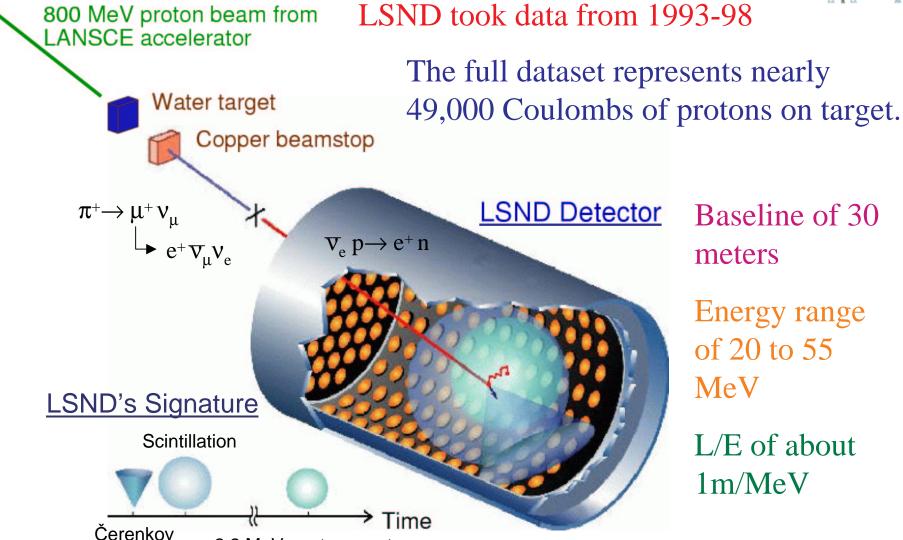
Jonathan Link
Columbia University

Workshop on Neutrino News from the Lab and the Cosmos
October 17-19, 2002

October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02

Outline

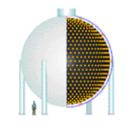

1. The LSND Experiment

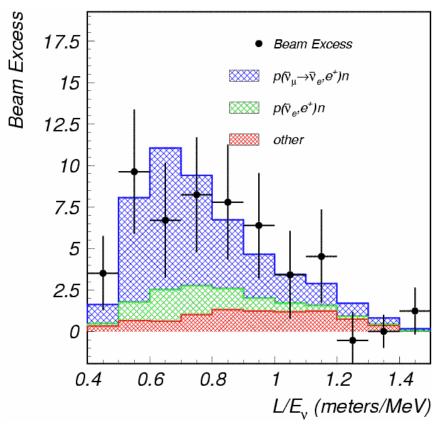

- a. The experimental setup
- b. Results
- c. Ramifications

2. MiniBooNE

- a. The BooNE Collaboration
- b. The beam line and expected neutrino flux
- c. The MiniBooNE detector
- d. Expected backgrounds and systematics
- e. First neutrino events, and cosmic rays
- f. Non-oscillation physics with MiniBooNE
- 3. Conclusions and Outlook

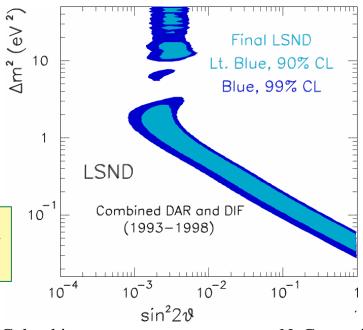
The LSND Experiment



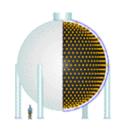

October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02

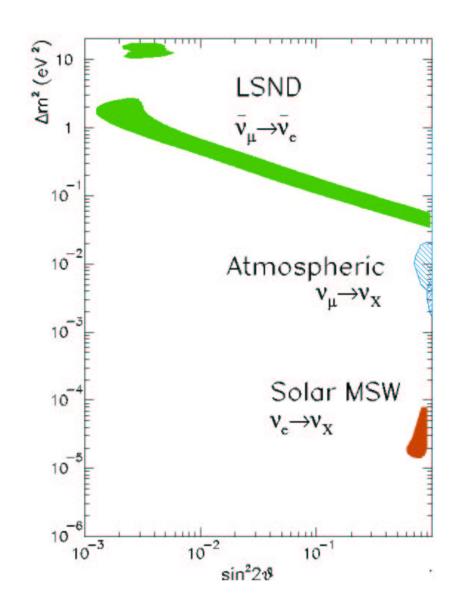
2.2 MeV neutron capture

LSND's Unexpected Result

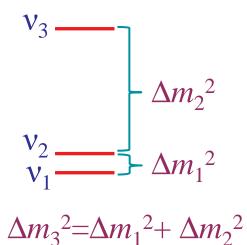

They looked for an excess of $\bar{\nu}_e$ events in a $\bar{\nu}_{\mu}$ beam

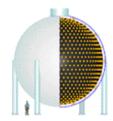
They found $87.9 \pm 22.4 \pm 6.0$ events over expectation.


With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

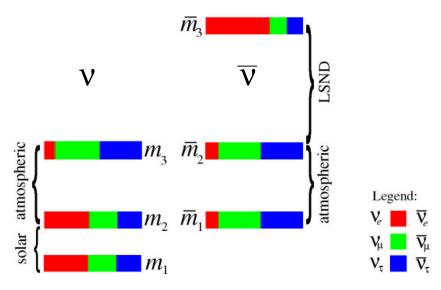

 3.3σ evidence for oscillation.

Decay in flight analysis ($\nu_{\mu} \rightarrow \nu_{e}$) oscillation probability of (0.10 ± 0.16 ± 0.04) %

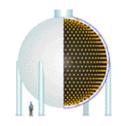

Why is this Result Interesting?


LEP found that there are only 3 light neutrinos that interact weakly.

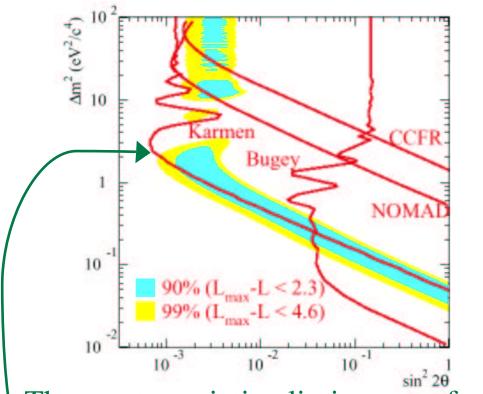
Three neutrinos allow only 2 independent Δm^2 scales.


But there are experimental results in $3 \Delta m^2$ regions!?!

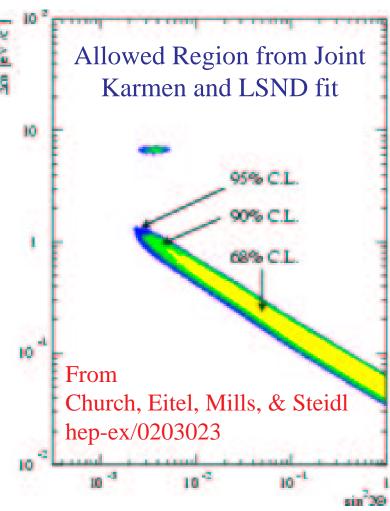
How Can We Fix the Things?


- 1. One or more of the experiments can be wrong.
- 2. Add a fourth sterile neutrino. Giving you three independent Δm^2 scales. (Not dead yet see Pas, Song, and Weiler hep-ph/0209373)
- 3. Violate CPT. Giving you different mass scales for v and \overline{v} .

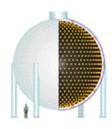
If MiniBooNE sees an LSND signal with ν we can rule this out, but if we don't then we need to run with $\overline{\nu}$!


From Barenboim et al., Phys.Lett.B534:106,2002

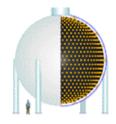
Other Related Data



Several other experiments have looked


for oscillations in this region.

The most restrictive limits come from the Karmen Experiment.



A Conclusive Experiment is Needed

- With High Significance
 - At least 5σ over the entire LSND region
 (including systematic and statistical uncertainties)
 - Demonstrating expected energy dependence for oscillation
- Low and Different Systematics (Change the signature)
 - Change the beam to higher energy
 - Optimize detector for new signature
- High Statistics
 - About an order of magnitude more events than LSND

The BooNE Collaboration

The BooNE Collaboration

Y.Liu, I.Stancu University of Alabama

S.Koutsoliotas

<u>Bucknell University</u>

E.Church, C.Green, G.J.VanDalen *University of California, Riverside*

E.Hawker, R.A.Johnson, J.L.Raaf <u>University of Cincinnati</u>

> T.Hart, E.D.Zimmerman University of Colorado

L.Bugel, J.M.Conrad, J.Formaggio, J.Link, J.Monroe, M.H.Shaevitz, M.Sorel, G.P.Zeller

Columbia University

D.Smith
Embry Riddle Aeronautical University

C.Bhat, S.J.Brice, B.C.Brown, B.T.Fleming, R.Ford, F.G.Garcia, P.Kasper, T.Kobilarcik, I.Kourbanis, A.Malensek, W.Marsh, P.Martin, F.Mills, C.Moore, P.Nienaber, E.Prebys, A.D.Russell, P.Spentzouris, R.Stefanski, T.Williams

Fermi National Accelerator Laboratory

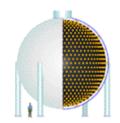
D.C.Cox, J.A.Green, S.McKenney, H.Meyer, R.Tayloe <u>Indiana University</u>

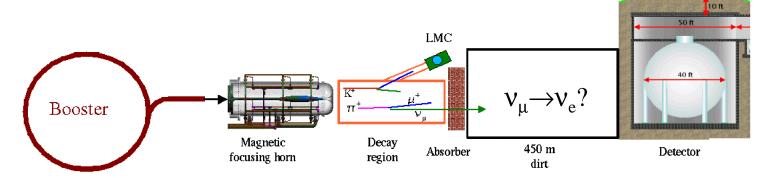
G.T.Garvey, W.C.Louis, G.McGregor, G.B.Mills, E.Quealy, V.Sandberg, B.Sapp, R.Schirato, R.Van de Water, D.H.White

<u>Los Alamos National Laboratory</u>

R.Imlay, W.Metcalf, M.Sung, M.Wascko

Louisiana State University


J.Cao, Y.Liu, B.P.Roe University of Michigan


A.O.Bazarko, P.D.Meyers, R.B.Patterson, F.C.Shoemaker, H.A.Tanaka *Princeton University* The <u>Booster Neutrino</u>
<u>Experiment... BooNE</u>

BooNE was formed to search for v_e appearance in a v_{μ} beam at Fermilab.

BooNE consists of about 60 scientists from 13 institutions.

The MiniBooNE Neutrino Beam

Start with an intense 8 GeV proton beam from the Booster.

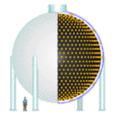
In the Be target primarily pions are produced, but also some kaons.

Charged pions decay almost exclusively as $\pi^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$.

 $K^{\pm} \rightarrow \pi^{0} e^{\pm} v_{e}$, $K_{L} \rightarrow \pi^{\pm} e^{\mp} v_{e}$ and $\mu^{\pm} \rightarrow e^{\pm} v_{e}$ contribute v_{e} 's to background.

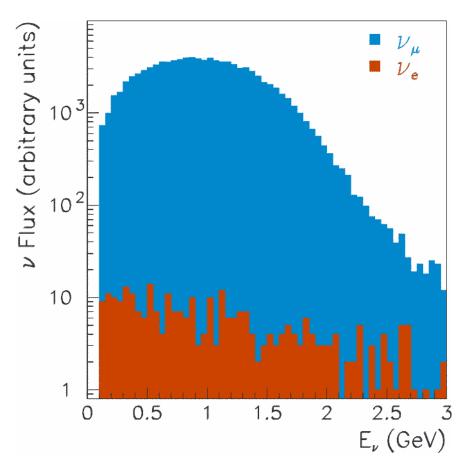
A toroidal field horn focuses the charged particles on the detector.

Initially positive particles will be focused selecting v.


The horn current can be reversed to select \overline{V} .

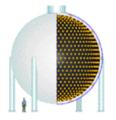
Increases neutrino intensity by an order of magnitude.

The horn is followed by a decay region.


The decay region is followed by an absorber and 450 m of dirt, beyond which only the neutrino component of the beam survives.

Neutrino Flux at the Detector

The L/E is designed to be a good match to LSND at ~1 m/MeV.


$$P_{oscillation} = \sin^2 2\theta \sin^2 (1.27\Delta m^2 L/E)$$

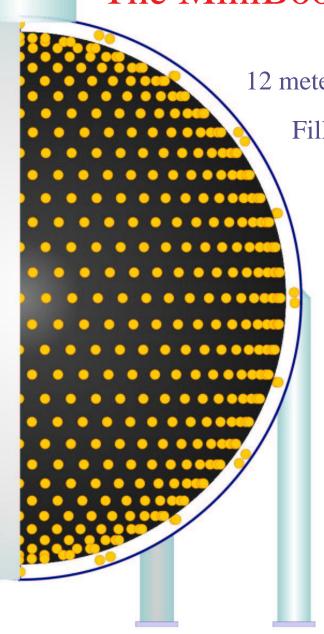
From beam simulations the expected intrinsic v_e flux is small compared to the v_{μ} flux.

But the intrinsic v_e flux is comparable in size to an LSND-like signal.

The MiniBooNE Detector

12 meter diameter sphere

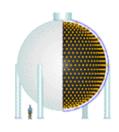
Filled with 950,000 liters of pure mineral oil — 20+ meter attenuation length

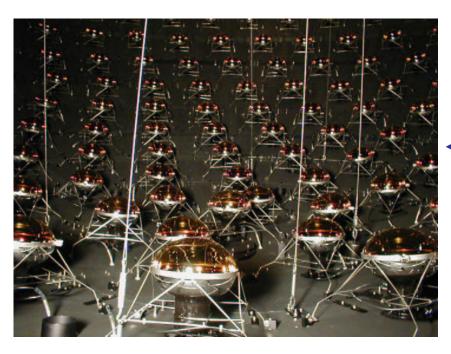

Light tight inner region with 1280 photomultiplier tubes

Outer veto region with 240 PMTs.

Neutrino interactions in oil produce:

- Prompt Čerenkov light
- Delayed scintillation light

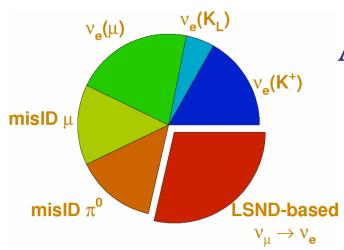

Čerenkov:scintillation ~ 5:1



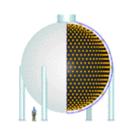
October 17-19, 2002

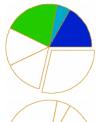
Jonathan Link, Columbia

Inside the MiniBooNE Detector



PMTs at the bottom of the detector just before sealing up the inner region.


View of the Veto Region as the first oil is added to the detector.



October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02

Approximate number of events expected in MiniBooNE with two years of running.

Intrinsic v_e background:

1,500 events

$$\mathbf{c} = \mathbf{x}$$

μ mis-ID background:

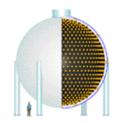
500 events

$$\nu_{\mu}$$
 μ

 π^0 mis-ID background:

500 events

$$\begin{array}{ccccc}
\nu_{\mu} & \nu_{\mu} \\
\hline
 & \pi^{0} \\
\hline
 & \mathbf{x}
\end{array}$$

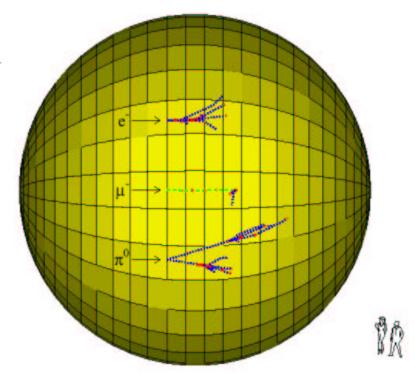


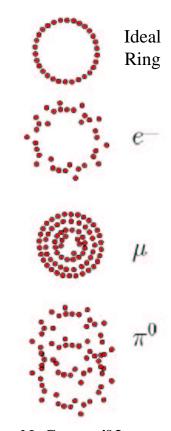
LSND-like $\nu_{\mu} \rightarrow \nu_{e}$:

1,000 events

$$e^{-}$$

Particle Identification: μ , e, & π^0

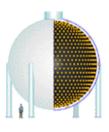

The signatures are substantially different from LSND


- Factor 10 higher energy
- Neutron capture does not play a role

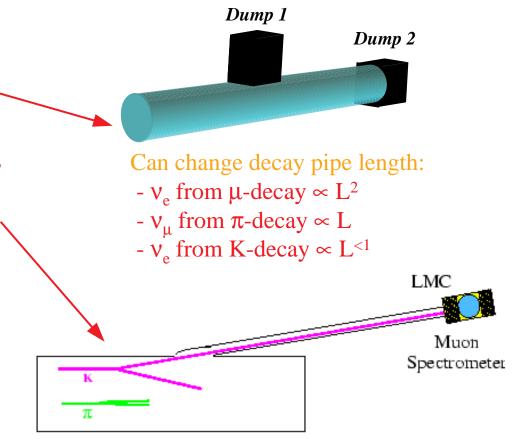
Particle ID is based on ring id, track length, ratio of prompt/late light.

Fuzzy rings distinguish electrons from muons.

 π^0 from neutral current interactions typically look like 2 electrons, but infrequently the two rings overlap and appear as one.

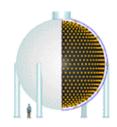

October 17-19, 2002

Jonathan Link, Columbia

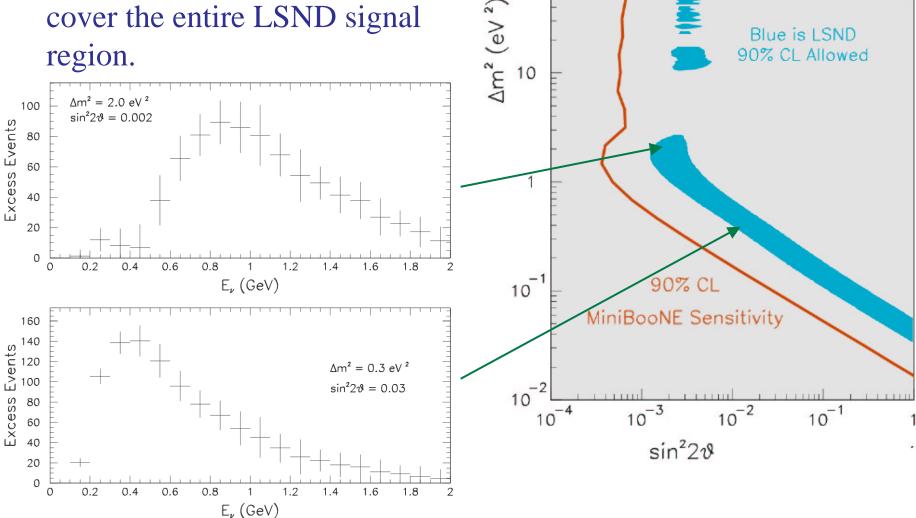

NuCosmo '02

Understanding Backgrounds

All Backgrounds can be related to data measurements



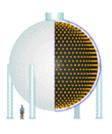
- Intrinsic Beam Backgrounds
 - v_e from μ –decay
 - Directly tied to observed v_{μ} rate
 - Quadratic decay pipe length_ dependence
 - v_e from K-decay
 - Related to observed high E events
 - Beam surveys: BNL-910, HARP
 - "Little Muon Counters" (LMC)
- Mis-Identification
 - Neutral current π^0 production
 - Scaled from the fraction that are properly reconstructed
 - ν_{μ} mis-id'ed as ν_{e} 's
 - Scaled from the majority that are properly reconstructed

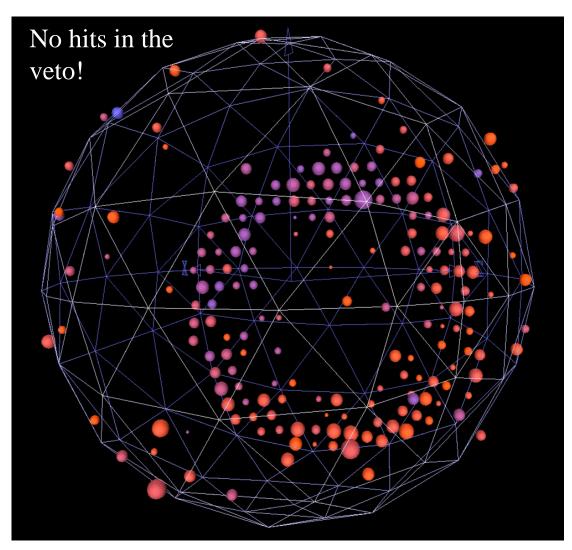


Decay Channel

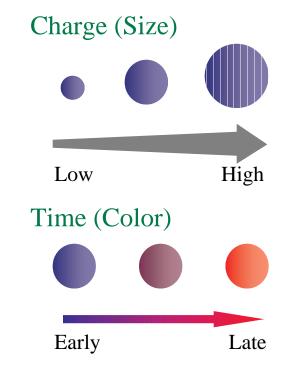
MiniBooNE Sensitivity to LSND

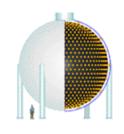
With 1×10²¹ protons on target MiniBooNE will completely cover the entire LSND signal region.

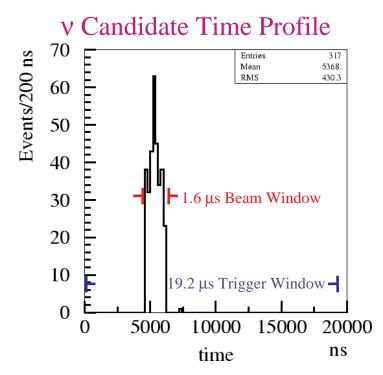

October 17-19, 2002


Jonathan Link, Columbia

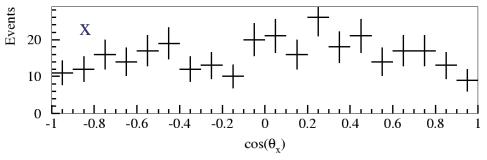
NuCosmo '02

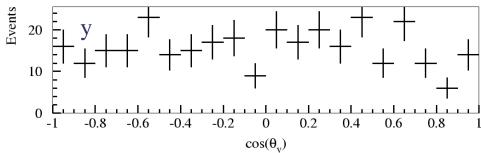

First Beam Events

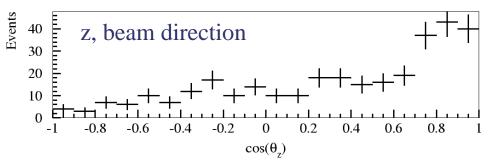



This is a typical event from the first few days of beam data.

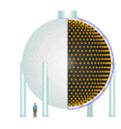
First Beam Events (Continued)

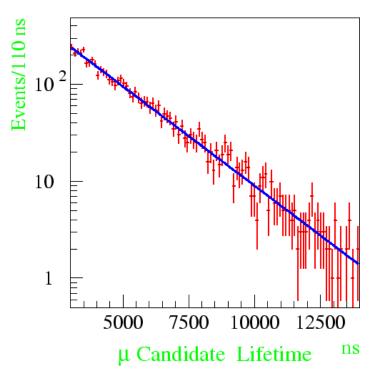




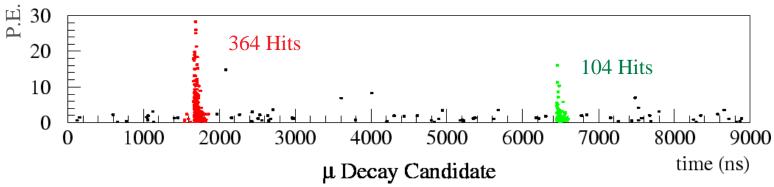

Required >250 hits in the Main Tank and <6 hits in the Veto.

Found 316 events in the beam window and only one background for a signal-to-noise ratio >3000!!!


Reconstructed Lepton Direction Cosines



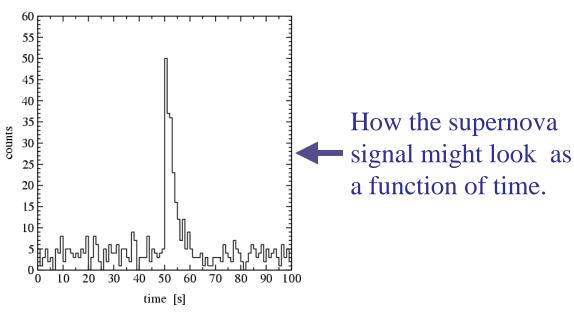
Cosmic Muon Decays

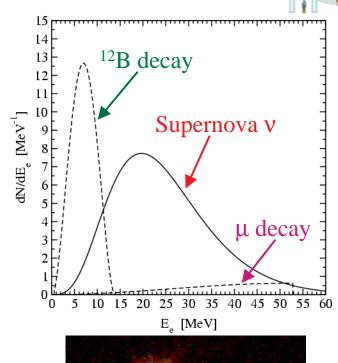


Fit Lifetime:

$$\tau = 2.12 \pm 0.05 \ \mu s$$

Expected μ lifetime in oil – 2.13 μ s

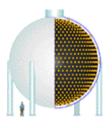

with $8\% \mu^-$ capture on Carbon.

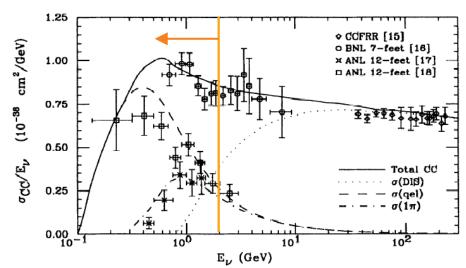


MiniBooNE as a Supernova v Detector

For a Supernova within 10 Kpc MiniBooNE expects to see at least 200 v interactions in a 10 second period.

From Sharp, Beacom, and Formaggio Phys. Rev. D66:013012,2002



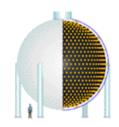

October 17-19, 2002 Jonathan Link, Columbia NuCosmo '02

Cross Sections and Exotics

The v cross sections are not well measured in our energy range.

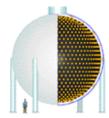
Oscillation probability is small enough that we can ignore it in ν_{μ} cross section measurements.

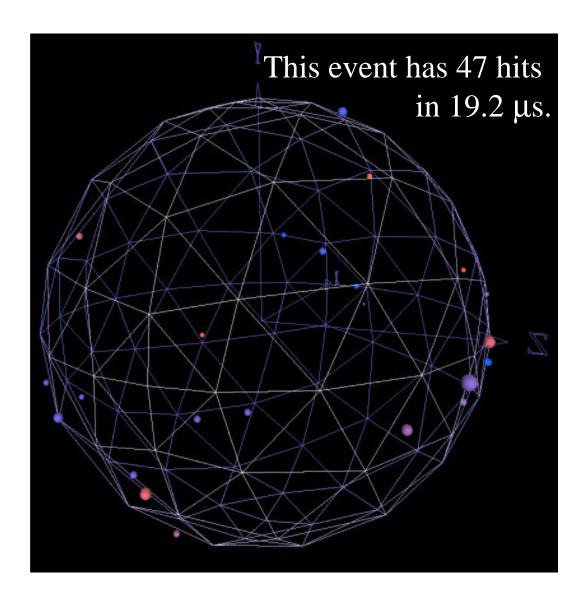
From Lipari et al., PRL 74, 4384

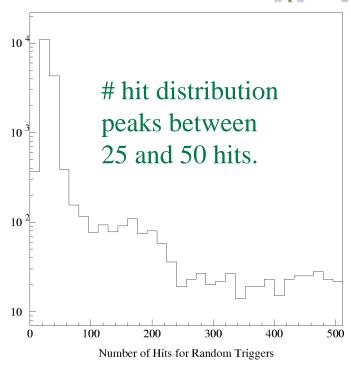

Exotics:

Look for things that may not have been conceived of yet

Neutrino Magnetic Moment (Very Small in SM)
The Karmen Timing Anomaly

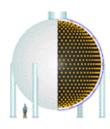

(see paper by Case, Koutsoliotas, and Novak, Phys. Rev. D65:077701, 2002)


Conclusions and Outlook



- We began taking beam data in September of this year.
- We will take at least 5×10^{20} protons on target in v mode.
- With this data we should be able to confirm or rule out the full high Δm^2 oscillation range of LSND (CPT conserving).
- If no signal is seen in ν mode, $\overline{\nu}$ running is needed to investigate CPT violation.
- We will also study several other physics topics such as
 - Cross Sections
 - Supernova neutrinos
 - Exotics
- Possible upgrade to BooNE, a two detector experiment to carefully measure Δm^2 and look for v_{μ} disappearance.

Typical Dark Noise in MiniBooNE



Mean per tube dark noise rate is only 1.2 kHz!

More on LSND's Analysis...

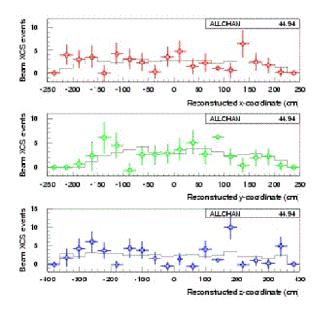
Examples of backgrounds people worry about...

Can these events be neutrons in coincidence with an *e*-like interaction?

- neutrons produced in the beam will sometimes capture
- but also will knock into the nucleus producing multiple γ's → the "smoking gun" is an excess of multiple γ events.

Events with one associated γ : 49.2 \pm 9 events Events with > 1 associated γ : -2.8 \pm 1.7 events

Estimated background from neutrons in the beam: < 2 events


Can these events be from
$$\bar{\nu}_{\mu} + p \rightarrow \mu^{+} + n$$
?

- The $\bar{\nu}_{\mu}$ come the neutrino has to have $> 105~{\rm MeV}$
 - It had to be produced by decay-in-flight (not DAR)
 - The CC probability is small until well above threshold
- · You have to mis-identify the muon!

Estimated background from $\bar{\nu}_{\mu}$: < 5 events

The spatial distribution of the excess

- If the excess is due to oscillations,
 then the distribution will look similar the ν_c beam events.
 (solid black line)
- If the events are due to background,
 then you expect asymmetries in the distribution...

